265 research outputs found

    New insights on stochastic reachability

    Get PDF
    In this paper, we give new characterizations of the stochastic reachability problem for stochastic hybrid systems in the language of different theories that can be employed in studying stochastic processes (Markov processes, potential theory, optimal control). These characterizations are further used to obtain the probabilities involved in the context of stochastic reachability as viscosity solutions of some variational inequalities

    Abstractions of Stochastic Hybrid Systems

    Get PDF
    In this paper we define a stochastic bisimulation concept for a very general class of stochastic hybrid systems, which subsumes most classes of stochastic hybrid systems. The definition of this bisimulation builds on the concept of zigzag morphism defined for strong Markov processes. The main result is that this stochastic bisimulation is indeed an equivalence relation. The secondary result is that this bisimulation relation for the stochastic hybrid system models used in this paper implies the same kind of bisimulation for their continuous parts and respectively for their jumping structures

    Towards a General Theory of Stochastic Hybrid Systems

    Get PDF
    In this paper we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Markov strings are strong Markov processes with the cadlag property. We then show how a very general class of stochastic hybrid processes can be embedded in the framework of Markov strings. This class, which is referred to as the General Stochastic Hybrid Systems (GSHS), includes as special cases all the classes of stochastic hybrid processes, proposed in the literature

    Abstractions of stochastic hybrid systems

    Get PDF
    Many control systems have large, infinite state space that can not be easily abstracted. One method to analyse and verify these systems is reachability analysis. It is frequently used for air traffic control and power plants. Because of lack of complete information about the environment or unpredicted changes, the stochastic approach is a viable alternative. In this paper, different ways of introducing rechability under uncertainty are presented. A new concept of stochastic bisimulation is introduced and its connection with the reachability analysis is established. The work is mainly motivated by safety critical situations in air traffic control (like collision detection and avoidance) and formal tools are based on stochastic analysis

    Stochastic optimization on continuous domains with finite-time guarantees by Markov chain Monte Carlo methods

    Full text link
    We introduce bounds on the finite-time performance of Markov chain Monte Carlo algorithms in approaching the global solution of stochastic optimization problems over continuous domains. A comparison with other state-of-the-art methods having finite-time guarantees for solving stochastic programming problems is included.Comment: 29 pages, 6 figures. Revised version based on referees repor

    Reachability analysis of discrete-time systems with disturbances

    No full text
    Published versio

    Behavioral uncertainty quantification for data-driven control

    Get PDF
    This paper explores the problem of uncertainty quantification in the behavioral setting for data-driven control. Building on classical ideas from robust control, the problem is regarded as that of selecting a metric which is best suited to a data-based description of uncertainties. Leveraging on Willems' fundamental lemma, restricted behaviors are viewed as subspaces of fixed dimension, which may be represented by data matrices. Consequently, metrics between restricted behaviors are defined as distances between points on the Grassmannian, i.e., the set of all subspaces of equal dimension in a given vector space. A new metric is defined on the set of restricted behaviors as a direct finite-time counterpart of the classical gap metric. The metric is shown to capture parametric uncertainty for the class of autoregressive (AR) models. Numerical simulations illustrate the value of the new metric with a data-driven mode recognition and control case study.Comment: Submitted to the 61st IEEE Conference on Decision and Contro

    A randomized approach to stochastic model predictive control

    Get PDF
    In this paper, we propose a novel randomized approach to Stochastic Model Predictive Control (SMPC) for a linear system affected by a disturbance with unbounded support. As it is common in this setup, we focus on the case where the input/state of the system are subject to probabilistic constraints, i.e., the constraints have to be satisfied for all the disturbance realizations but for a set having probability smaller than a given threshold. This leads to solving at each time t a finite-horizon chance-constrained optimization problem, which is known to be computationally intractable except for few special cases. The key distinguishing feature of our approach is that the solution to this finite-horizon chance-constrained problem is computed by first extracting at random a finite number of disturbance realizations, and then replacing the probabilistic constraints with hard constraints associated with the extracted disturbance realizations only. Despite the apparent naivety of the approach, we show that, if the control policy is suitably parameterized and the number of disturbance realizations is appropriately chosen, then, the obtained solution is guaranteed to satisfy the original probabilistic constraints. Interestingly, the approach does not require any restrictive assumption on the disturbance distribution and has a wide realm of applicability

    A multiresolution approximation method for fast explicit model predictive control

    Get PDF
    A model predictive control law is given by the solution to a parametric optimization problem that can be pre- computed offline and provides an explicit map from state to control input. In this paper, an algorithm is introduced based on wavelet multiresolution analysis that returns a low complexity explicit model predictive control law built on a hierarchy of second order interpolets. The resulting interpolation is shown to be everywhere feasible and continuous. Further, tests to confirm stability and to compute a bound on the performance loss are introduced. Since the controller approximation is built on a grid hierarchy, convergence to a stabilizing control law is guaranteed and the evaluation of the control law in real-time systems is naturally fast and runs in a bounded logarithmic time. Two examples are provided; A two-dimensional example with an evaluation speed of 31 ns and a four-dimensional example with an evaluation speed of 119 ns
    corecore